Identification of core genes and outcome in gastric cancer using bioinformatics analysis

نویسندگان

  • Chenhua Sun
  • Qi Yuan
  • Dongdong Wu
  • Xiaohu Meng
  • Baolin Wang
چکیده

Gastric cancer (GC) is a common malignant neoplasm of gastrointestinal tract. We chose gene expression profile of GSE54129 from GEO database aiming to find key genes during the occurrence and development of GC. 132 samples, including 111 cancer and 21 normal gastric mucosa epitheliums, were included in this analysis. Differentially expressed genes (DEGs) between GC patients and health people were picked out using GEO2R tool, then we performed gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using The Database for Annotation, Visualization and Integrated Discovery (DAVID). Moreover, Cytoscape with Search Tool for the Retrieval of Interacting Genes (STRING) and Molecular Complex Detection (MCODE) plug-in was utilized to visualize protein-protein interaction (PPI) of these DEGs. There were 971 DEGs, including 468 up-regulated genes enriched in focal adhesion, ECM-receptor interaction and PI3K-Akt signaling pathway, while 503 down-regulated genes enriched in metabolism of xenbiotics and drug by cytochrome P450, chemical carcinogenesis, retinol metabolism and gastric acid secretion. Three important modules were detected from PPI network using MCODE software. Besides, Fifteen hub genes with high degree of connectivity were selected, including BGN, MMP2, COL1A1, and FN1. Moreover, the Kaplan-Meier analysis for overall survival and correlation analysis were applied among those genes. In conclusion, this bioinformatics analysis demonstrated that DEGs and hub genes, such as BGN, might promote the development of gastric cancer, especially in tumor metastasis. In addition, it could be used as a new biomarker for diagnosis and to guide the combination medicine of gastric cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bioinformatics identification of miRNA-mRNA regulatory network contributing to lung cancer invasion

Background: Over the past 15 years, significant insights have been gained into the roles of miRNAs in cancer. In various cancers, miRNAs can act as oncogenes, tumor suppressors, or control the metastasis process by modulating the expression of numerous target genes. This study is aimed at determining molecular network of miRNA-mRNA regulating lung cancer invasion, by bioinformatics approaches. ...

متن کامل

Changes of Genetic Loci among Gastric Cancer Patients, Southeastern Iran, 2017

Background: Characterization of genes and precise assessment of the number of copies are crucial for understanding the basis of emergence, progression, and identification of predictive markers of tumor malignancy. This study aimed to investigate the role of the changes in some central genes in gastric cancer. Materials and Methods: In this experimental study, 30 patients with gastric surgery w...

متن کامل

Bioinformatics Identification of miRNA-mRNA Regulatory Network Contributing Primary Lung Cancer

Introduction: In clinical practice, distinguishing invasive lung tumors from primary tumors remains a challenge. With recent advances in understanding biological alterations of tumorigenesis and molecular analytic technologies, using these molecular alterations can be sensitive and tumor-specific as biomarker for the stratification of patients. In this study, the molecular network of miRNA-mRNA...

متن کامل

Evaluation of the Prognostic Value and TRIP13 gene Expression in Gastric Cancer

Introduction: Gastric cancer is a major public health issue worldwide. The factors that initiate cancer are not well understood, however aberrant expression of genes is associated with this cancer. TRIP13 plays pivotal roles in meiotic recombination, DNA repair, and cell cycle progression. An increasing body of evidence suggests that TRIP13 may possess functions other than meiosis and mitosis, ...

متن کامل

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017